
NPCNameWriteUp

December 1, 2016

Contents

1 Introduction 1

2 Working 2
2.1 Genetic Algorithm . 2
2.2 Alignment Scoring . 2

3 Illustration 3

4 Justification and Future Work 3
4.1 Justification for Techniques Used 3
4.2 Future Work . 4
Milind Luthra

1 Introduction

Github: https://github.com/milindl/NPC-name
This is a generator for NPC(Non-Playing Character) names. This was

motivated by the book Caves of Steel, in which there’s a character called
Daneel. It’s similar to Daniel, but not the same, and hence it’s a suitable,
mysterious-yet-forgettable name - perfect for NPCs.

The basic idea behind it is: take a "seed" name, and try to come up
with names "close" to the seed name. A genetic algorithm comes up with
new names in each generation, and a fitness function determines how close
that is to the seed name. As soon as it’s close enough, the genetic algorithm
terminates, and we can use the multitude of names generated.

The names themselves must be in IPA. For further reference, read https:
//en.wikipedia.org/wiki/International_Phonetic_Alphabet. It’s also

1

https://github.com/milindl/NPC-name
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

worth looking at the chart of 44 IPA I’ve used, since those must be used to
spell names - http://www.antimoon.com/resources/phonchart2008.pdf,

2 Working

2.1 Genetic Algorithm

The GA used is pretty straightforward. Except for not being binary, the im-
plementation is not that different from usual. Interested readers can check
out https://en.wikipedia.org/wiki/Genetic_algorithm and then try
doing https://www.codewars.com/kata/binary-genetic-algorithms/javascript
if they wish to.

The fitness I’ve used is

f =
AlignmentScore(generated, seed)

Mean(generated.length, seed.length)

I’ve described the AlignmentScore below.
Note : In this working, the fitness can sometimes exceed the perfect

fitness which is 1 (perfect fitness := when generated and seed are same). This
is because I’m dividing with the mean, and not the max, of the lengths(the
lengths are variable).

2.2 Alignment Scoring

Each possible aligment of the sequences(generated and seed) is given a score
as per the following criteria:

1. 1 point for match

2. x points for mismatch

3. A penalty ∆ for gaps

x is decided by how similar sounding the alphabet in the first sequence
is to the second one.

For example, the mismatch (au, Ou) has a higher score than (t, s),
since it makes a similar sound. The complete list of scores can be
found in the comparison matrix, a 44x44 matrix that provides the key
to mismatch scores.

The alignment score that is the best amongst all possible alignment
scores is returned by AlignmentScore.

2

http://www.antimoon.com/resources/phonchart2008.pdf
https://en.wikipedia.org/wiki/Genetic_algorithm
https://www.codewars.com/kata/binary-genetic-algorithms/javascript

The idea for this was motivated by sequence matching of protiens.
The idea for a comparison matrix came from PAM matrices(https://
en.wikipedia.org/wiki/Point_accepted_mutation), a system that
tells us how likely a protien is to change from one form to another over
time. I’ve tried to do the same to some extent(looking up the evolution
of language), but got bored and as of now, comparison matrix is simply
based on how similar the phonetics sound.

The 44 rows/cols of the matrix represent IPAs, and if we want to see
how similar IPA1 is to IPA2, we can simply go to the row corresponding
to IPA1 and the col corresponding to IPA2 and look at its value.

The actual algorithm itself is similar to finding pairwise sequence align-
ments between protien sequences. Look up https://en.wikipedia.
org/wiki/Needleman%E2%80%93Wunsch_algorithm for an exact de-
scription of the algorithm.

3 Illustration

Seed name: d ei v i d (DAVID)
Generated names:

• d ei o: i d (DAOUID) (DAY - OO - EE - D)

• d ei v i TH (DAVITH)

• d ei v TH (DAVTH) (pretty much useless)

• d ei v i e:(r) (DAVIER)

• TH ei v i (THAYVI) (TH as in THIN)

Clearly, not all of them are useable, but they’re not useless either.

4 Justification and Future Work

4.1 Justification for Techniques Used

I wanted to implement a GA properly, and I am interested in sequence
alignment, so this seemed like a great opportunity. I could alternatively
made substitution tables and then substituted in the original (ie approach
it from the other side).

3

https://en.wikipedia.org/wiki/Point_accepted_mutation
https://en.wikipedia.org/wiki/Point_accepted_mutation
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

This would have probably been faster, but it would’ve lacked the feel of
the language somehow changing. Though I didn’t base the comparison off
the actual evolution of the language, it could possibly be done by not making
the comparison matrix symmetric (to model the flow of time) and by basing
the data off actual fact :)

4.2 Future Work

1. Base off actual data (comparison matrix improvements)

2. Make the alignment score dependant on the neighbouring letters as
well. Some letters tend to be in pairs, and that’s ignored here.

4

	Introduction
	Working
	Genetic Algorithm
	Alignment Scoring

	Illustration
	Justification and Future Work
	Justification for Techniques Used
	Future Work

